Коэффициент вариации и стандартное отклонение: разница


Стандартное отклонение набора данных — это способ измерить, насколько среднее значение отличается от среднего.

Чтобы найти стандартное отклонение данного образца , мы можем использовать следующую формулу:

s = √(Σ(x i – x ) 2 / (n-1))

куда:

  • Σ: символ, означающий «сумма».
  • x i : значение i -го наблюдения в выборке
  • x : среднее значение выборки
  • n: размер выборки

Чем выше значение стандартного отклонения, тем более разбросаны значения в выборке. Однако трудно сказать, является ли заданное значение стандартного отклонения «высоким» или «низким», потому что это зависит от типа данных, с которыми мы работаем.

Например, стандартное отклонение 500 можно считать низким, если речь идет о годовом доходе жителей определенного города. И наоборот, стандартное отклонение 50 можно считать высоким, если мы говорим об экзаменационных баллах студентов по определенному тесту.

Один из способов понять, является ли определенное значение стандартного отклонения высоким или низким, состоит в том, чтобы найти коэффициент вариации , который рассчитывается как:

CV = с / х

куда:

  • s: Стандартное отклонение выборки
  • x : Среднее значение выборки

Проще говоря, коэффициент вариации — это отношение между стандартным отклонением и средним значением.

Чем выше коэффициент вариации, тем выше стандартное отклонение выборки относительно среднего значения.

Пример: расчет стандартного отклонения и коэффициента вариации

Предположим, у нас есть следующий набор данных:

Набор данных: 1, 4, 8, 11, 13, 17, 19, 19, 20, 23, 24, 24, 25, 28, 29, 31, 32

Используя калькулятор, мы можем найти следующие показатели для этого набора данных:

  • Среднее значение выборки ( x ): 19,29
  • Стандартное отклонение выборки (с): 9,25

Затем мы можем использовать эти значения для расчета коэффициента вариации:

  • CV = с / х
  • КВ = 9,25/19,29
  • КВ = 0,48

Для этого набора данных полезно знать как стандартное отклонение, так и коэффициент вариации.

Стандартное отклонение говорит нам о том, что типичное значение в этом наборе данных отличается от среднего на 9,25 единицы. Затем коэффициент вариации говорит нам, что стандартное отклонение составляет примерно половину среднего значения выборки.

Стандартное отклонение против коэффициента вариации: когда использовать каждый

Стандартное отклонение чаще всего используется, когда мы хотим узнать разброс значений в одном наборе данных.

Однако коэффициент вариации чаще используется, когда мы хотим сравнить вариацию между двумя наборами данных.

Например, в финансах коэффициент вариации используется для сравнения среднего ожидаемого дохода от инвестиций с ожидаемым стандартным отклонением инвестиций.

Например, предположим, что инвестор рассматривает возможность инвестирования в следующие два взаимных фонда:

Взаимный фонд A: среднее = 9%, стандартное отклонение = 12,4%

Взаимный фонд B: среднее = 5%, стандартное отклонение = 8,2%

Инвестор может рассчитать коэффициент вариации для каждого фонда:

  • CV для взаимного фонда A = 12,4% / 9% = 1,38
  • CV для взаимного фонда B = 8,2% / 5% = 1,64

Поскольку взаимный фонд А имеет более низкий коэффициент вариации, он предлагает лучшую среднюю доходность по сравнению со стандартным отклонением.

Резюме

Вот краткое изложение основных моментов в этой статье:

  • И стандартное отклонение, и коэффициент вариации измеряют разброс значений в наборе данных.
  • Стандартное отклонение измеряет, насколько далеко среднее значение от среднего.
  • Коэффициент вариации измеряет отношение стандартного отклонения к среднему значению.
  • Стандартное отклонение используется чаще, когда мы хотим измерить разброс значений в одном наборе данных.
  • Коэффициент вариации чаще используется, когда мы хотим сравнить вариацию между двумя разными наборами данных.

Дополнительные ресурсы

Как рассчитать среднее и стандартное отклонение в Excel
Как рассчитать коэффициент вариации в Excel

Замечательно! Вы успешно подписались.
Добро пожаловать обратно! Вы успешно вошли
Вы успешно подписались на кодкамп.
Срок действия вашей ссылки истек.
Ура! Проверьте свою электронную почту на наличие волшебной ссылки для входа.
Успех! Ваша платежная информация обновлена.
Ваша платежная информация не была обновлена.